Cytotoxic Biscembranes from the Soft Coral Sarcophyton glaucum

Tetsuo Iwagawa, ${ }^{*}{ }^{\dagger}$ Kanta Hashimoto, ${ }^{\dagger}$ Yukiko Yokogawa, ${ }^{\dagger}$ Hiroaki Okamura, ${ }^{\dagger}$ Munehiro Nakatani, ${ }^{\dagger}$ Matsumi Doe, ${ }^{\ddagger}$ Yoshiki Morimoto, ${ }^{\ddagger}$ and Kaoru Takemura ${ }^{\text {§ }}$
Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan, Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan, and Sankei Kagaku Co., Ltd., 2-9 Nan'ei-chou, Kagoshima 891-0122, Japan

Received June 12, 2008
Seven new tetracyclic biscembranes $(\mathbf{1}-\mathbf{7})$ have been isolated from the soft coral Sarcophyton glaucum. Four (1-4) may be formed biogenetically by a Diels-Alder reaction of $\Delta^{4(5)}$ and $\Delta^{8(9)}$ geometrical isomers of methyl sarcoate and $\Delta^{21(34),} 35(36)$ dienes, including two with a tetrahydrofuran ring between C-27 and C-30 $(\mathbf{3}, \mathbf{4})$, and three biscembranes (5-7) are probably derived from methyl sarcoate isomers with $\Delta^{1(14), 4(5), 8(9)}$ and a cembrane diene. Their structures were established on the basis of spectroscopic methods. Six of them ($\mathbf{1}-\mathbf{5}, \mathbf{7}$) exhibited weak cytotoxic activity against proliferation of human promyelocytic leukemia cells (HL-60).

The soft corals of the genus Sarcophyton (family Alcyoniidae) are well known as a rich source of cembrane dimers exhibiting a wide range of biological activities. ${ }^{1}$ Nineteen kinds of unusual biscembranes have been isolated so far from S. glaucum, S. tortuosum, and S. latum. ${ }^{2-10}$ In the course of our studies of the bioactive cembrane constituents of the soft coral Sarcophyton glaucum, collected in Kagoshima Prefecture, ${ }^{11,12}$ Japan, we isolated four new cembranes, named bisglaucumlides A-D, with different double-bond geometries at C-4 and C-8. ${ }^{8}$ Bisglaucumlides C and D exhibited weak cytotoxicity against the growth of HL-60. Further investigation of the dichloromethane extract has led to the isolation of seven new biscembranes, bisglaucumlides $\mathrm{E}-\mathrm{K}(\mathbf{1} \mathbf{- 7})$. We report the isolation and structure elucidation of these new compounds.

Bisglaucumlide E (1) was isolated as an amorphous powder and had a molecular formula of $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9}$, established by HRFABMS spectrometry $\left(\mathrm{m} / z 697.4314,[\mathrm{M}+\mathrm{H}]^{+}\right)$, which suggested a possible isomer of bisglaucumlide A. Comparison of the NMR data with those of bisglaucumlides $\mathrm{A}-\mathrm{D}$ revealed the greatest similarities to the NMR data of bisglaucumlide C, except for the lack of an acetyl group in $\mathbf{1}$. This was supported by the fact that the chemical shift of H-32 ($\delta 3.55,1 \mathrm{H}$, overlapped) was shifted upfield by 1.46 ppm when compared with that of bisglaucumlide C. The relative configuration of $\mathbf{1}$ was elucidated by the similarity of the NOE spectrum to that of bisglaucumlide C: H-4 ($\delta 6.22,1 \mathrm{H}, \mathrm{s}) / \mathrm{H}-2(\delta$ $3.94,1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$), Me-19 ($\delta 1.92,3 \mathrm{H}$, br s), H-36b ($\delta 1.98$, $1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}$); H-7a ($\delta 2.57,1 \mathrm{H}, \mathrm{dd}, J=14.2,8.7 \mathrm{~Hz}$) Me-18 ($\delta 1.80,3 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\mathrm{H}-7 \mathrm{~b}(\delta 2.13,1 \mathrm{H}$, overlapped)/Me-19; $\mathrm{H}-8(\delta 6.34,1 \mathrm{H}$, br t, $J=7.3 \mathrm{~Hz}) / \mathrm{H}-6 \mathrm{a}(\delta 3.86,1 \mathrm{H}, \mathrm{m}), \mathrm{H}-11 \mathrm{a}(\delta$ $3.06,1 \mathrm{H}, \mathrm{dd}, J=14.2,8.7 \mathrm{~Hz}$), H-12 ($\delta 2.76,1 \mathrm{H}, \mathrm{m}$), Me-19; COOMe ($\delta 3.54,3 \mathrm{H}, \mathrm{s}) / \mathrm{Me}-16(\delta 0.89,3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$, Me$17(\delta 0.92,3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), \mathrm{H}-22(\delta 4.73,1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz})$. Thus, the structure of $\mathbf{1}$ was depicted as shown and is the 32-desacetyl derivative of bisglaucumlide C .

Bisglaucumlide F (2) was obtained as an amorphous powder with the molecular formula $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{10}$ and is an isomer of bisglaucumlides $B-D$. While resonances due to rings B, C, and D in the ${ }^{1} H$ NMR spectrum were similar to those of bisglaucumlides B-D, only resonances due to the A ring were somewhat different from each other. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the E geometry at C-4 and the Z geometry at C-8 were evident from the chemical shifts of C-19 ($\delta_{\mathrm{C}} 20.7$) and C-18 ($\delta_{\mathrm{C}} 21.5$), respectively, the latter of which was

[^0]

1

3

5
6
$R=H$
$\mathrm{R}=\mathrm{Ac}$

2

4

7
downfield shifted by 9.7 ppm when compared to that of bisglaucumlide C, which has an $8 E$ geometry. This was also supported by the NOE correlations of $\mathrm{Me}-19(\delta 2.09,3 \mathrm{H}$, br s) to $\mathrm{H}-6 \mathrm{a}(\delta 2.15$, $1 \mathrm{H}, \mathrm{m})$ and of $\mathrm{Me}-18(\delta 2.01,3 \mathrm{H}, \mathrm{br}$ s) to $\mathrm{H}-8(\delta 5.62,1 \mathrm{H}, \mathrm{t}, J=$ 8.0 Hz). The major conformation of the A ring was confirmed by interpretation of the NOE correlations (Figure 1). Thus, Me-41 (δ $3.52,3 \mathrm{H}, \mathrm{s}$) was correlated to $\mathrm{H}-2(\delta 3.69,1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), Me-16 ($\delta 0.79,3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), and Me-17 ($\delta 0.99,3 \mathrm{H}, \mathrm{d}, J=$ 6.8 Hz), indicating that $\mathrm{H}-2$, the isopropyl group, and Me-41 were β-oriented. NOE correlations from H-4 ($\delta 5.66,1 \mathrm{H}$, s) to H-6a and $\mathrm{H}-7 \mathrm{~b}(\delta 2.40,1 \mathrm{H}, \mathrm{m}), \mathrm{H}-8$ to $\mathrm{H}-6 \mathrm{~b}(\delta 2.08,1 \mathrm{H}$, overlapped) and $\mathrm{H}-6 \mathrm{a}$, Me-18 to $\mathrm{H}-11 \mathrm{~b}$ ($\delta 2.08,1 \mathrm{H}$, overlapped), and $\mathrm{H}-11 \mathrm{a}$ (δ $3.05,1 \mathrm{H}$, dd, $J=14.8,10.9 \mathrm{~Hz})$ to Me-16 were observed. With respect to the configuration of rings $\mathrm{B}-\mathrm{D}$, it was established to be similar to those of bisglaucumlides $B-D$ by the signal patterns and the coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectrum and NOE

Figure 1. Selected NOE correlations of 2.

Figure 2. Selected NOE correlations of 3.
experiments. This is the first report of the isolation of a biscembrane possessing $4 E$ and $8 Z$ geometries.

Bisglaucumlide $\mathrm{G}(\mathbf{3})$ was isolated as a viscous oil with the molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9}$ and was isomeric with bisglaucumlides A and $E(\mathbf{1})$. Though resonances due to rings A and B in the NMR spectra were similar to those of bisglaucumlide A, the carbon chemical shifts due to rings C and D were drastically shifted. Thus, the chemical shifts of C-26, C-27, and C-30 were found to be at δ $74.6,84.8$, and 87.6 , respectively, while the corresponding signals in bisglaucumlide A were shifted at $\delta 85.1,69.9$, and 69.3 , respectively. This implied the formation of an ether ring linkage between C-27 and C-30. The relative configuration of rings A and B was elucidated to be the same as those of bisglaucumlide A by the interpretation of the NOESY data, though an NOE correlation between $\mathrm{H}-2(\delta 4.02,1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$ and the carbomethoxy methyl protons ($\delta 3.57,3 \mathrm{H}, \mathrm{s}$, Me-41) was not observed. Thus, Me-41 indicated NOE correlations to $\mathrm{Me}-16$ ($\delta 0.80,3 \mathrm{H}, \mathrm{d}, J=$ 6.8 Hz) and Me-17 ($\delta 0.96,3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$), suggesting that the carbomethoxy group and the isopropyl group were situated on the same β face of the molecule. NOE correlations of H-4 ($\delta 6.05$, 1 H , br s) to $\mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}(\delta 2.30,1 \mathrm{H}, \mathrm{m}), \mathrm{H}-7 \mathrm{~b}(\delta 2.41,1 \mathrm{H}$, overlapped), and H-8 ($\delta 6.24,1 \mathrm{H}, \mathrm{m}$) were found. Furthermore, NOE correlations between $\mathrm{H}-7 \mathrm{a}(\delta 2.53,1 \mathrm{H}$, overlapped) and Me18 ($\delta 1.73,3 \mathrm{H}, \mathrm{br}$ s), between $\mathrm{H}-8$ and $\mathrm{H}-11(\delta 3.45,1 \mathrm{H}$, dd, $J=$ $13.7,5.7 \mathrm{~Hz}$), between $\mathrm{H}-12(\delta 2.54,1 \mathrm{H}$, overlapped) and $\mathrm{H}-14 \mathrm{a}$ ($\delta 3.30,1 \mathrm{H}, \mathrm{d}, J=19.1 \mathrm{~Hz}$), and between $\mathrm{H}-14 \mathrm{~b}(\delta 2.01,1 \mathrm{H}, \mathrm{d}$, $J=19.1 \mathrm{~Hz})$ and $\mathrm{H}-21(\delta 3.63,1 \mathrm{H}$, br d, $J=11.0 \mathrm{~Hz})$ were observed. Therefore, this suggested that $\mathrm{H}-2$ had a β-orientation and $\mathrm{H}-21$ had an α-orientation. The relative configuration of rings C and D was also elucidated as depicted in Figure 2. NOE correlations between $\mathrm{H}-21$ and $\mathrm{H}-32(\delta 3.49,1 \mathrm{H}, \mathrm{m})$ suggested that H-32 was α-oriented. The Me-38 ($\delta 1.74,3 \mathrm{H}$, br s) showed NOE correlations to $\mathrm{H}-21, \mathrm{H}-24 \mathrm{~b}$ ($\delta 2.13,1 \mathrm{H}$, overlapped), and $\mathrm{H}-26(\delta 3.38,1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz})$, the latter of which was also correlated to $\mathrm{Me}-40$ ($\delta 1.17,3 \mathrm{H}, \mathrm{br}$ s), indicating an α-configurations of H-26 and Me-40. NOE correlations of Me-39 ($\delta 1.15,3 \mathrm{H}$, br s) to $\mathrm{H}-30(\delta 4.06,1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$ and $\mathrm{H}-28 \mathrm{~b}(\delta 1.65,1 \mathrm{H}$, overlapped) and of $\mathrm{H}-30$ to $\mathrm{H}-28 \mathrm{~b}$ suggested β-configurations of $\mathrm{H}-30$ and Me-39. NOE correlations of H-22 ($\delta 5.26,1 \mathrm{H}, \mathrm{d}, J=$ 11.0 Hz) to $\mathrm{H}-24$ a ($\delta 2.46$), $\mathrm{H}-25 \mathrm{a}$ ($\delta 1.89$), and Me-41 were also observed. Therefore, bisglaucumlide G was assigned the structure shown for 3 . This is the third isolation of a biscembrane containing a tetrahydrofuran ring between $\mathrm{C}-27$ and $\mathrm{C}-30 .{ }^{10}$

Bisglaucumlide H (4) was isolated as a viscous oil possessing the molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9}$. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of $\mathbf{3}$, except that resonances due to the A ring were somewhat different. The Me-18 and $\mathrm{Me}-19$ in the ${ }^{13} \mathrm{C}$ NMR resonated at δ_{C} 20.5 and $\delta_{\mathrm{C}} 27.5$, respectively, suggesting the $4 Z, 8 Z$-geometry, as for bisglaucumlide C. This was further supported by NOE correlations between Me-18 ($\delta 1.88,3 \mathrm{H}, \mathrm{br}$ s) and H-8 ($\delta 5.51,1 \mathrm{H}, \mathrm{t}, J$ $=8.2 \mathrm{~Hz}$), and between Me-19 ($\delta 1.87,3 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $\mathrm{H}-4(\delta 6.27$, $1 \mathrm{H}, \mathrm{br} \mathrm{s})$. The signal patterns and coupling constants due to rings B, C, and D in the ${ }^{1} \mathrm{H}$ NMR spectrum were almost the same as those of 3. Therefore, the structure of bisglaucumlide H was assigned as 4.

Bisglaucumlide I (5) was obtained as a viscous oil with the molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9}$. The ${ }^{1} \mathrm{H}$ NMR spectrum was very similar to that of $\mathbf{1}$; however, the signal patterns and the chemical shifts due to $\mathrm{H}-2$ and $\mathrm{H}-14$ were drastically changed (Table 1). In the HMBC spectrum (Figure 3), methylene protons ($\delta 2.35$ and $3.15, \mathrm{AB}, J=19.0 \mathrm{~Hz})$ and $\mathrm{H}-4(\delta 6.07,1 \mathrm{H}, \mathrm{s})$ were correlated to $\mathrm{C}-3(\delta 199.6) . \mathrm{H}-12(\delta 3.08,1 \mathrm{H}, \mathrm{m})$ and a proton at $\delta 3.89(1 \mathrm{H}$, d, $J=7.9 \mathrm{~Hz}$) showed HMBC correlations to C-13 ($\delta 214.0$). The latter proton was also correlated to C-35 ($\delta 128.6$) and C-36 (δ 32.1). Therefore, the methylene protons and the $\delta 3.89$ proton were assigned as $\mathrm{H}-2$ and $\mathrm{H}-14$, respectively. The configuration of the $\mathrm{A}-\mathrm{B}$ ring juncture was determined as cis by the interpretation of the NOESY spectrum. Thus, an NOE between H-12 and H-14 indicated that both hydrogens were situated on the same α face of the molecule. The carbomethoxy methyl protons ($\delta 3.55,3 \mathrm{H}, \mathrm{s}$) were correlated to H-22 ($\delta 4.70,1 \mathrm{H}$, br d, $J=11.6 \mathrm{~Hz}$), suggesting that the carbomethoxy group had an α-orientation. The $\Delta^{4(5)} Z$ and $\Delta^{8(9)} E$ configurations were established by the chemical shifts of C-19 ($\delta 24.9$) and C-18 ($\delta 11.3$), respectively. The configurations of the chiral centers in rings $B-D$ were confirmed to be the same as that of $\mathbf{1}$ by comparing the NMR data with those of $\mathbf{1}$. Bisglaucumlide I was assumed to be biogenetically formed by the Diels-Alder reaction of methyl sarcophytoate isomer $\mathbf{8}$ with the diene 9, as depicted in Figure 4.

Bisglaucumlide J (6) was isolated as an amorphous powder with the molecular formula $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{10}$ and found to have a similar ${ }^{1} \mathrm{H}$ NMR spectrum to that of $\mathbf{5}$ except for an additional acetyl group. The acetoxy group was determined to be positioned at C-32, and the chemical shift of $\mathrm{H}-32(\delta 5.06,1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$) was downfield shifted by 1.51 ppm when compared to that of 5 . Therefore, the structure of bisglaucumlide J was shown as 6 .

Bisglaucumlide K (7) was isolated as an amorphous powder with the molecular formula $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{10}$ and was an isomer of 6 . The signal patterns and chemical shifts of rings B-D in the ${ }^{1} \mathrm{H}$ NMR spectrum were very similar to those of $\mathbf{5}$ and $\mathbf{6}$. Resonances due to ring A were in good agreement with those of $\mathbf{3}$, namely, the presence of E geometries at C-4 and C-8, which was confirmed by the chemical shifts of C-19 ($\delta 18.2$) and C-18 ($\delta 11.2$). The configuration of the chiral centers was determined to be the same as that of 6 on comparing the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and NOESY spectral data with those of 6 . Therefore, the structure of bisglaucumlide K was established to be 7. The lack of several chemical shifts in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra and correlations in the HMQC and HMBC spectra was observed, which was probably due to a slow conformational interconversion of 7 .

The absolute configurations of the new compounds were shown in structures 1 and $3-7$, because the CD spectra of $\mathbf{1}, 4,5$, and $\mathbf{6}$, and $\mathbf{3}$ and 7 were similar to those of bisglaucumlides C and A, respectively. It is assumed that 2 also has the same absolute configuration as the other compounds due to their biogenetic relationship.

Bisglaucumlides $\mathrm{I}-\mathrm{K}$ represent the second isolation of biscembranes probably derived from a methyl sarcoate isomer with a $\Delta 1(14), 4(5), 8(9)$ and $\Delta 21(34), 35(36)$ cembrane diene. ${ }^{9}$ The presence of a carbomethoxy group in biscembranes isolated so far
Table 1. NMR Spectral Data ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for $\mathbf{1}-\mathbf{7}^{a}$

position	1		2		3		4		5		6		7	
	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(J$ in Hz$)$												
1	48.0		47.2		48.1		50.1		47.6		48.1		c	
2	47.1	3.94 d (8.7)	46.2	3.69 d (8.5)	46.9	4.02 d (8.0)	45.4	3.63, br t (7.7)	49.3	3.15 d (19.0)	49.3	3.10 d 19.2	50.2	2.92 br d (15.2)
										2.35 d (19.0)		2.69 d 19.2		2.56 br d (15.2)
3	201.7		202.6		205.0		202.2		199.6	6.07 s	198.9	6.07 s	196.9	5.55 br s
4	126.7	6.22 s	124.6	5.66 s	127.0	6.05 br s	125.4	6.27 br s	125.9		125.5		124.5	
5	157.2		158.8		159.3		161.0		156.1	2.03 m	156.6	$2.01{ }^{\text {b }}$	155.2	2.38 m
6a	30.2	3.86 m	39.2	2.15 m	39.6	$2.41{ }^{\text {b }}$	35.0	$\begin{aligned} & 2.79 \mathrm{dt}(10.2,2.9) \\ & 1.97^{b} \end{aligned}$	30.4	3.79 dt (12.5, 2.6)	30.7	$3.80 \mathrm{dt}(2.5,12.8)$	40.0	2.48 m
6b		$2.07{ }^{\text {b }}$		$2.08{ }^{\text {b }}$		2.30 m				2.51 m		2.55 m		2.09 m
7 a	26.1	$2.57 \mathrm{dd}(14.2,8.7)$	26.7	2.79 m	25.1	$2.53{ }^{\text {b }}$	27.6	2.37 m	26.2	2.25 m	25.9	2.21 m	25.3	.
7 b		$2.13{ }^{\text {b }}$		2.40 m		$2.41{ }^{\text {b }}$		2.10 m	141.6	6.40 t (7.5)	141.6	6.43 t (7.5)	142.0	6.61 br s
8	141.4	6.34 br t (7.3)	140.3	5.62 t (8.0)	141.4	6.24 m	132.4	5.51 t (8.2)						
9	138.3		134.9		137.9		138.6		137.2		136.9		138.1	
10	202.4		204.4		203.6		206.5		200.8		201.3		203.9	
11a	35.6	3.06 dd (14.2, 8.7)	37.0	3.05 dd (14.8, 10.9)	33.2	3.45 dd (13.7, 5.7)	40.0	$3.12 \mathrm{dd}(18.7,9.2)$	34.6	2.76 dd (15.7, 6.3)	34.6	$2.80 \mathrm{dd}(16.2,5.1)$	c	3.41 br s
11b		$2.09 \mathrm{dd}(14.2,3.1)$		$2.08^{\text {b }}$		$2.01 \mathrm{dd}(13.7,5.1)$		2.22 d (18.7)		2.61 dd (15.7, 5.7)		2.38 dd (16.2, 5.7)		$1.86{ }^{\text {b }}$
12	55.7	2.76 m	53.9	$2.80 \mathrm{dt}(10.9,3.3)$	56.1	$2.54{ }^{\text {b }}$	50.7	3.25 m	55.5	3.08 m	54.8	3.03 q (5.9)	59.0	c
13	212.2		211.0		210.7		211.0		214.0		212.6		212.5	
14a	48.8	2.38 d (19.30)	48.0	3.30 d (19.4)	47.4	3.30 d (19.1)	48.0	3.06 d (18.5)	45.7	3.89 d (7.9)	45.6	$3.62{ }^{\text {b }}$	45.5	3.16 m
14 b		3.04 d (19.3)		2.36 d (19.4)		2.01 d (19.1)		2.86 d (18.5)						
15	29.5	2.01b	29.9	$2.07{ }^{\text {b }}$	30.4	$2.13{ }^{\text {b }}$	29.5	1.91 m	28.0	2.22 m	28.1	$2.15{ }^{\text {b }}$	28.3	2.16 m
16	19.1	0.89 d (6.7)	18.0	0.79 d (6.9)	17.3	0.80 d (6.8)	18.8	0.79 d (6.8)	18.2	0.87 d (6.8)	18.4	0.87 d (6.7)	16.6	0.69 d (6.5)
17	20.8	0.92 d (6.7)	20.6	0.99 d (6.8)	20.5	0.96 d (6.8)	20.6	0.94 d (6.7)	21.1	0.89 d (6.7)	21.4	0.87 d (6.7)	21.8	1.06 br s
18	11.4	1.80 br s	21.5	2.01 br s	11.6	1.73 br s	20.5	1.88 br s	11.3	1.69 br s	11.2	1.73 br s	11.2	1.75 br s
19	24.5	1.92 br s	20.7	2.09 br s	18.7	2.09 br s	27.5	1.87 br s	24.9	1.92 br s	24.9	1.90 br s	18.2	2.26 br s
20	173.3		173.8		173.2		174.4		173.4		174.0		174.1	
21	41.1	$3.64{ }^{\text {b }}$	40.2	3.42 br d 11.6)	40.6	3.63 br d (11.0)	46.9	3.30 br d (10.6)	40.3	3.58 br d (11.6)	40.9	$3.63{ }^{\text {b }}$	c	3.29 m
22	124.7	4.73 d (11.2)	125.0	4.74 d (11,6)	125.7	5.26 d (11.0)	127.7	5.16 d (10.6)	125.0	4.70 d (11.6)	125.0	4.75 d (11.5)	123.9	4.90 d (10.8)
23	140.4		134.9		138.1		138.4		140.1		140.4		142.0	
24a	38.9	$2.41{ }^{\text {b }}$	38.4	2.44 m	32.7	$2.46{ }^{\text {b }}$	32.6	2.42 m	39.0	$2.43{ }^{\text {b }}$	38.5	2.43 m	39.0	$2.42{ }^{\text {b }}$
24b		$1.86{ }^{\text {b }}$		$1.85 \mathrm{dt}(3.4,13.7)$		$2.13{ }^{\text {b }}$		2.02 m		1.85 m		$1.84 \mathrm{dt}(3.0,12,8)$		$1.84{ }^{\text {b }}$
25a	27.0	$1.87{ }^{\text {b }}$	26.5	$1.95{ }^{\text {b }}$	32.2	$1.89{ }^{\text {b }}$	33.6	$1.98{ }^{\text {b }}$	26.9	$1.87{ }^{\text {b }}$	26.5	1.93 m	27.3	$1.81{ }^{\text {b }}$
25 b		$1.56{ }^{\text {b }}$		$1.55 \mathrm{dt}(3.4,13.7)$		$1.65{ }^{\text {b }}$		$1.57{ }^{\text {b }}$		1.57 m		$1.55{ }^{\text {b }}$		1.58 m at 27°
26	85.1	$3.64{ }^{\text {b }}$	85.2	3.69 d (10.9)	74.6	3.38 br d (6.8)	73.2	3.39 br d (9.6)	85.0	3.65 d (8.9)	85.1	3.68 d (9.9)	85.1	3.67 br d (8.3)
27	69.9		69.8		84.8		84.7		69.9		69.8		69.8	
28a	31.9	$1.69{ }^{\text {b }}$	31.6	$1.68{ }^{\text {b }}$	36.4	$2.09{ }^{\text {b }}$	36.2	$2.23{ }^{\text {b }}$	31.8	$1.69{ }^{\text {b }}$	31.5	$1.68{ }^{\text {b }}$	31.9	$1.69{ }^{\text {b }}$
28 b		1.48 dt ($4.3,13.4$)		$1.49 \mathrm{dt}(13.8,4.5)$		$1.65{ }^{\text {b }}$		1.62 m		1.48 dd (13.7, 4.5)		$1.49 \mathrm{dt}(5.0,13.9)$		$1.47 \mathrm{dt}(14.1,4.7)$
29a	20.1	$1.72^{\text {b }}$	20.0	$1.71{ }^{\text {b }}$	27.4	$1.89{ }^{\text {b }}$	26.7	$2.23{ }^{\text {b }}$	20.0	1.73 m	20.0	1.70^{b}	20.2	$1.73{ }^{\text {b }}$
29 b		$1.57{ }^{\text {b }}$		1.59 m		$1.89{ }^{\text {b }}$		$1.77^{\text {b }}$		$1.57{ }^{\text {b }}$		$1.57{ }^{\text {b }}$		1.61 m
30	69.3	3.65 m	69.2	3.64 br d (9.5)	87.6	4.06 t (7.4)	88.0	3.99 (10.1, 5.7)	69.4	3.64 d (12.7)	69.2	3.63b	69.7	3.61 brd (10.1)
31	75.5		75.9		74.7		75.1		75.5		76.0		75.9	
32	71.0	$3.55{ }^{\text {b }}$		5.07 br s	76.0	3.49 m	73.2	3.88 m	70.8	$3.55^{\text {b }}$	74.7	5.06 d (11.4)	74.7	$5.02 \mathrm{br} \mathrm{d} \mathrm{(10.8)}$
33 a	31.5	$2.43{ }^{\text {b }}$	28.4	2.77 m	32.3	$2.48{ }^{\text {b }}$	37.4	$\begin{aligned} & 3.03 \mathrm{~b}, \mathrm{~m} \\ & 1.91, \mathrm{~m} \end{aligned}$	31.4	$\begin{aligned} & 2.44^{b} \\ & 2.27 \text { br d (13.7) } \end{aligned}$	28.6	$\begin{aligned} & 2.71^{b} \\ & 2.16^{b} \end{aligned}$	29.2	2.76 br t (13.9)
33 b		$2.29{ }^{\text {b }}$		2.14 m		$2.36{ }^{\text {b }}$								2.20 br d (13.9)
34	126.0		124.0		126.5		127.7		125.6		125.0		126.3	
35	127.6		127.5		129.3		128.1		128.6		126.9		128.5	
36a	32.3	2.96 dd (18.4, 8.7)	32.6	2.86 br dd (18.3, 8.3)	32.9	2.79 dd (18.3, 8.0)	33.1	$2.32 \mathrm{dd}(18.7,7.7)$	32.1	3.12 m	31.9	2.97 dd (18.7, 9.3)	34.3	c
36 b		1.98 d (18.4)		1.74 br d (18.4)		$1.93 \mathrm{~b} \mathrm{rd} \mathrm{(18.3)}$		2.18 m		$1.93{ }^{\text {b }}$		$1.94{ }^{\text {b }}$		c
37	20.0	1.69 br s	19.8	1.65 br s	19.6	1.68 br s	19.2	1.71 br s	19.8	1.69 br s	19.6	1.64 br s	19.7	1.66 br s
38	19.9	1.81 br s	19.9	1.94 br s	19.7	1.74 br s	20.8	1.86 br s	19.7	1.82 br s	19.9	1.98 br s	19.9	1.91 br s
39	25.6	1.12 s	25.4	1.11 s	19.3	1.15 s	19.5	1.15 br s	25.5	1.11 s	25.4	1.11 s	25.7	1.11 br s
40	18.9	1.33 s	18.7	1.15 s	21.4	1.17 br s	18.1	1.11 br s	18.8	1.31	18.7	1.13 s	18.8	1.14 s
41	51.2	3.54 s	51.0	3.52 s	51.5	3.57 s	51,1	3.56 s	51.3	3.55 s	51.1	3.53 s	51.4	3.54 s
Ac			$\begin{aligned} & 20.9, \\ & 170.8 \end{aligned}$			C-31, C-32 OH					$\begin{aligned} & 20.6 \\ & 170.6 \end{aligned}$	1.99 s	$\begin{aligned} & 20.9 \\ & 170.5 \end{aligned}$	2.03 s

Figure 3. Selected HMBC correlations of 5.

Figure 4. Probable biogenetic pathway for 5.
from the ethanol, ${ }^{2,3}$ acetone, ${ }^{4,9,10}$ dichloromethane, ${ }^{5}$ and ethyl acetate ${ }^{6}$ extracts suggests that the carbomethoxy group of the new biscembranes $\mathbf{1 - 7}$ is not formed during the extraction process. Furthermore, the double-bond geometries did not change during the isolation procedures. Therefore, 1-7 are probably genuine natural products.

The cytotoxic activity of bisglaucumlides $\mathrm{E}-\mathrm{K}$ against proliferation of human promyelocytic leukemia cells (HL-60) was examined, and they exhibited weak activity with the following IC_{50} values: E $(41.0 \mu \mathrm{M}), \mathrm{F}(13.3 \mu \mathrm{M}), \mathrm{G}(58.0 \mu \mathrm{M}), \mathrm{H}(47.8 \mu \mathrm{M}), \mathrm{I}(44.1 \mu \mathrm{M})$, K ($29.8 \mu \mathrm{M})$.

Experimental Section

General experimental procedures, animal material, and initial extraction and isolation procedures have been previously reported. ${ }^{8}$

Isolation. Material (6.8 g) that eluted from a silica gel chromatography column with $1: 19 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was chromatographed on silica gel using a gradient of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Elution with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:49) gave a crude fraction (184 mg), which was finally purified by HPLC (ODS) with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (1:1 to 3:2) to yield compounds $\mathbf{2}(2.7 \mathrm{mg}), \mathbf{6}(1.2 \mathrm{mg})$, and $\mathbf{7}(1.3 \mathrm{mg})$. After the fractions (694 mg) eluted with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:19), the material was repeatedly subjected to silica gel chromatography and then HPLC $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (9:11 to 3:2) to give compounds $\mathbf{1}(2.8 \mathrm{mg}), \mathbf{3}(3.2 \mathrm{mg})$, $4(1.2 \mathrm{mg})$, and $5(1.3 \mathrm{mg})$.

Bisglaucumlide \mathbf{E} (1): amorphous powder; $[\alpha]_{\mathrm{D}}+66.7$ (c 0.12 , $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 230 \mathrm{~nm}(4.25) ; \mathrm{CD} \Delta \epsilon_{231}+3.2, \Delta \epsilon_{252}$ -4.9 ; IR (film) $v_{\max } 3503,1732,1709,1661,1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRFABMS m/z $697.4314[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{9}, 697.4316$).

Bisglaucumlide F (2): amorphous powder; $[\alpha]_{\mathrm{D}}+139$ (c 0.30, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 238 \mathrm{~nm}(4.17) ; \mathrm{CD} \Delta \epsilon_{238}-10.3$; IR (film) $v_{\text {max }} 3459,1734,1713,1678,1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRFABMS m/z $739.4423[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{O}_{10}$, 739.4421).

Bisglaucumlide G (3): viscous oil; $[\alpha]_{\mathrm{D}}+125$ (c $\left.0.16, \mathrm{MeOH}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 232 \mathrm{~nm}(4.25) ; \mathrm{CD} \Delta \epsilon_{226}-3.4, \Delta \epsilon_{247}+4.4$; IR (film) $v_{\text {max }} 3482,1732,1715,1669,1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRFABMS $m / z 697.4318[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{9}$, 697.4316).

Bisglaucumlide H (4): viscous oil; $[\alpha]_{\mathrm{D}}+133$ (c 0.15, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 237 \mathrm{~nm}$ (4.09); CD $\Delta \epsilon_{254}-6.7$; IR (film) $v_{\text {max }} 3470,1732,1711,1694,1603 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRFABMS m/z 697.4316 [M + H ${ }^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{9}$, 697.4316).
Bisglaucumlide I (5): viscous oil; $[\alpha]_{\mathrm{D}}+84(c 0.05, \mathrm{MeOH})$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 227 \mathrm{~nm}(4.30) ; \mathrm{CD} \Delta \epsilon_{225}+12.8, \Delta \epsilon_{252}-8.4$; IR (film) $\nu_{\text {max }} 3457,1732,1703,1659,1622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRFABMS $m / z 697.4306[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{9}$, 697.4316).

Bisglaucumlide J (6): amorphous powder; $[\alpha]_{\mathrm{D}}+33$ (c 0.19, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 231 \mathrm{~nm}(4.20) ; \mathrm{CD} \Delta \epsilon_{226}+9.6, \Delta \epsilon_{250}$ -13.8; IR (film) $v_{\max } 3485,1732,1713,1691,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HREIMS m/z $738.4340[M]^{+}$(calcd for $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{10}$, 738.4343).

Bisglaucumlide K (7): amorphous powder; $[\alpha]_{\mathrm{D}}+95$ (c 0.27, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 231 \mathrm{~nm}(4.20) ; \mathrm{CD} \Delta \epsilon_{230}-5.2, \Delta \epsilon_{249}$ +10.9 ; IR (film) $v_{\text {max }} 3468,1709,1680,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HREIMS m/z $739.4426[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{O}_{10}$, 738.4421).

Acknowledgment. We thank Drs. D.-X. Hou and M. Fujii, Kagoshima University, for conducting the cytotoxicity assays.

References and Notes

(1) Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2008, 25, 35-94.
(2) Sue, J.; Long, K.; Pang, T.; He, C.-H.; Clardy, J. J. Am. Chem. Soc. 1986, 108, 177-178.
(3) Su, J.; Long, K.; Peng, T.; Zeng, L.; Zheng, Q.; Lin, X. Sci. Sin. (ser. B) 1988, 29, 1172-1184.
(4) Ishituka, M. O.; Kusumi, T.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 6595-6596.
(5) Leone, P. L.; Bowden, B. F.; Carroll, A. R.; Coll, J. C.; Meehan, G. V. J. Nat. Prod. 1993, 56, 521-526.
(6) Feller, M.; Rudi, A.; Berer, N.; Goldberg, I.; Stein, Z.; Benayahu, Y.; Schleyer, M.; Kashman, Y. J. Nat. Prod. 2004, 67, 1303-1308.
(7) Zeng, L.-M.; Lan, W.-J.; Su, J.-Y.; Zhang, G.-W.; Feng, X.-L.; Liang, Y.-J.; Yang, X.-P. J. Nat. Prod. 2004, 67, 1915-1918.
(8) Iwagawa, T.; Hashimoto, K.; Okamura, H.; Kurawaki, J.; Nakatani, M.; Hou, D.-X.; Fujii, M.; Doe, M.; Morimoto, Y.; Takemura, K. J. Nat. Prod. 2006, 69, 1130-1133.
(9) Yan, X.-H.; Gvagnin, M.; Cimino, G.; Guo, Y.-W. Tetrahedron Lett. 2007, 48, 5313-5316.
(10) Jia, R.; Guo, Y.-W.; Chen, P.; Yang, Y.-M.; Mollo, E.; Gavagnin, M.; Cimino, G. J. Nat. Prod. 2007, 70, 1158-1166.
(11) Iwagawa, T.; Nakamura, S.; Masuda, T.; Okamura, H.; Nakatani, M.; Siro, M. Tetrahedron 1995, 51, 5291-5298.
(12) Iwagawa, T.; Nakamura, S.; Okamura, H.; Nakatani, M. Bull. Chem. Soc. Jpn. 1996, 69, 3543.
NP8003485

[^0]: * To whom correspondence should be addressed. Tel: +81-99-285-8115. Fax: +81-99-285-8117. E-mail: iwagawa@sci.kagoshima-u.ac.jp.
 ${ }^{\dagger}$ Kagoshima University.
 ${ }^{*}$ Osaka City University.
 ${ }^{\text {§ }}$ Sankei Kagaku Co., Ltd.

